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Given a Taylor series with a finite radius of convergence, its Borel transform defines
an entire function. A theorem of Pólya relates the large distance behavior of the Borel
transform in different directions to singularities of the original function. With the help
of the new asymptotic interpolation method of van der Hoeven, we show that from
the knowledge of a large number of Taylor coefficients we can identify precisely the
location of such singularities, as well as their type when they are isolated. There is no
risk of getting artefacts with this method, which also gives us access to some of the
singularities beyond the convergence disk. The method can also be applied to Fourier
series of analytic periodic functions and is here tested on various instances constructed
from solutions to the Burgers equation. Large precision on scaling exponents (up to
twenty accurate digits) can be achieved.
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1. INTRODUCTION

In the late nineteenth Century, Pincherle(1) and then Borel(2,3) introduced what is
now known as the Borel transformation: given a formal series in powers of the
complex variable Z

f (Z ) =
∞∑

n=0

an Zn, (1)

1 CNRS UMR 6202, Observatoire de la Côte d’Azur, BP 4229, 06304 Nice Cedex 4, France.
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one introduces the Borel transformed series

F(ζ ) ≡
∞∑

n=0

an

n!
ζ n. (2)

Since, for Re Z > 0,
∫ ∞

0
ζ ne−Zζ dζ = n!

Zn+1
, (3)

it is useful to introduce the function

f BL(Z ) ≡ 1

Z
f

(
1

Z

)
=

∞∑

n=0

an

Zn+1
, (4)

which is formally the Laplace transform of F(ζ ) and which in this context is
sometimes called the Borel–Laplace transform of F .

Borel’s motivation was predominantly to give a meaning to divergent series
such as

∑
n!Zn and the Borel transformation has been extensively used to resum

divergent series appearing in physics (see e.g. Refs. 4–6).
In 1929 Pólya(7) observed that the Borel transformation can also be used to

obtain information about singularities of a Taylor series (in powers of 1/Z ) with a
finite radius of convergence, in which case the function F(ζ ) is entire. He proved
a theorem relating the convex hull of singularities of f BL(Z ) (the smallest convex
set outside of which the function is analytic) to a function called the indicatrix of
F(ζ ), roughly the rate of exponential growth at infinity of F(ζ ) as a function of
the direction (for precise definitions see Sec. 4).

Here we show that this theorem can be used in conjunction with high-accuracy
numerical methods to obtain very precise information on singularities of Taylor
and Fourier series. Singularities play an important role in fluid dynamics and
condensed matter physics (see Refs. 8–10 and references therein). Using Pólya’s
theorem to devise a practical numerical method would not have been possible
without recent progress in high-precision numerical algorithms and, foremost,
the new technique for asymptotic interpolation of van der Hoeven(11) which can
sometimes give remarkable precision (close to twenty digits) on scaling exponents.

The paper is organized as follows. In Sec. 2 we recall some known facts about
Taylor and Fourier series and their singularities. In Sec. 3 we give a presentation
of van der Hoeven’s method from an applied mathematics point of view and show
how it works in practice, using known results for the Burgers equation. In Sec. 4 we
give an elementary introduction to Pólya’s theorem. In Sec. 5 we present our new
method, which we propose to call BPH (Borel–Pólya–Hoeven), for determining
the convex hull of singularities and, for the case of isolated singularities on this
hull, their positions and type. In Sec. 6 we test BPH using again the Burgers
equation. In Sec. 7 we discuss open problems and make concluding remarks.
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2. FROM TAYLOR AND FOURIER COEFFICIENTS TO SINGULARITIES

We first recall the close relation between Fourier and Taylor series for an-
alytic functions. Let u(x) be a 2π -periodic function which is analytic in some
neighborhood of the real axis in which it can be extended to a function u(z),
where z = x + i y. After subtraction of a suitable constant we can assume that∫ 2π

0 u(x)dx = 0. The Fourier-series representation of u reads

u(x) =
∑

k=±1, ±2,...

ei kx ûk, (5)

ûk = 1

2π

∫ 2π

0
e−i kx u(x) dx . (6)

We denote by u+(x) (resp. u−(x)) the partial sum of the Fourier series (5) with
k > 0 (resp. k < 0), which is analytic in the upper (resp. lower) half plane y ≥ 0
(resp. y ≤ 0). Each of these two functions can be written as a Taylor series by an
exponential change of variable:

u+(z) =
∑

k>0

ûk Zk, Z ≡ ei z, (7)

u−(z) =
∑

k>0

û−k Z̃ k, Z̃ ≡ e−i z . (8)

Obtaining the singularities of an analytic periodic function from its Fourier co-
efficients is just basically the same problem as obtaining the singularities of an
analytic function f (Z ) = ∑∞

n=0 an Zn from its Taylor coefficients an . Hadamard’s
formula gives us the radius of convergence of the Taylor series, namely the dis-
tance to the origin of the nearest singularity(ies). If we happen to know that this
is an isolated singularity at Z�, we can relate the singular behavior near Z� to the
asymptotic behavior of the an by the Darboux theorem.(12−14) For this one assumes
that, in a neighborhood of Z�, the function f (Z ) is given by

f (Z ) = (1 − Z/Z�)−ν r (Z ) + a(Z ), ν �= 0,−1,−2 . . . , (9)

r (Z ) =
∞∑

k=0

bk (1 − Z/Z�)k , (10)

where the functions r (Z ) and a(Z ) are analytic in some disk centered at the origin
with a radius exceeding |Z�|. It then follows that, for large n,

an �
∞∑

k=0

(−1)kbk Zk−n
� �(n + ν − k)

n!�(ν − k)
. (11)
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The leading term is simply an � b0nν−1/(Zn
� )�(ν). Applied to the Fourier series

(5), the leading-order Darboux formula can be recast as follows: a branch-point
singularity with exponent −ν of u(z) at a location z� in the lower complex plane
implies that for k → +∞ the Fourier coefficient ûk is asymptotically proportional
to kν−1e−i kz� . This can be shown directly by applying standard steepest descent
asymptotics to the integral (6).(18)

When the radius of convergence of a Taylor series is determined by a single
singularity of the type assumed by Darboux, the knowledge of a sufficiently
large number of Taylor coefficients with enough accuracy permits an accurate
determination of the position and type of the singularity. This can be done by an
iterative algorithm developed by Hunter and Guerrieri(14) or by the asymptotic
interpolation method discussed in Sec. 3.

Sometimes there are two Darboux-type singularities on the convergence circle
or, equivalently, the periodic function u+(z) has two singularities with the same
imaginary part. The interference of the two singularities produces then a sinusoidal
modulation of the Taylor coefficients. This can still be handled by an iterative
algorithm,(14) but not directly by the asymptotic interpolation method, for reasons
explained in Sec. 3.2. The BPH method of Sec. 5 can handle not only the case
of two or more isolated singularities on the convergence circle but also “hidden”
singularities located beyond this circle (or within this circle if the series is in inverse
powers of Z ), whose contributions to the Taylor coefficients are exponentially
smaller than any term in (11). From an asymptotic point of view these contribution
are “beyond all orders.”

3. THE ASYMPTOTIC INTERPOLATION METHOD

Suppose that we have a function G(r ) of a scalar positive variable r for
which we suspect that it has, for large r , an asymptotic expansion with a leading
term Cr−αe−δr , as in the Darboux theorem (11), but that we only know its values
numerically with high accuracy (tens to hundreds of known digits) on a regular
grid r0, 2r0, . . . , Nr0 with a large number N of points (from fifty to thousands,
depending on the problem). We set

Gn ≡ G(nr0), n = 1, 2, . . . , N . (12)

Can we determine parameters such as C , α and δ with high accuracy? One way is
of course just to ignore the subleading corrections and to try a least square fit of the
data to the functional form Cr−αe−δr , after taking a logarithm. One then has the
awkward problem of having to pick a fitting interval of values of n; the procedure
usually gives poor accuracy and the determination of subleading corrections is
almost impossible.
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A better way, used for example in Refs. 15–17, is to notice that, if we take
the second ratio, defined as

Rn ≡ GnGn−2

G2
n−1

=
(

1 − 1

(n − 1)2

)−α

, (13)

then both the constant C and the exponential drop out. Assuming then n to be
sufficiently large that we can ignore subleading corrections, we obtain

α = − ln Rn

ln(1 − 1/(n − 1)2)
. (14)

The other two parameters C and δ appearing in (40) are then easily determined.
If the remainder, that is the discrepancy between the value of α predicted by
(14), which we denote αn , and its limit α∞ for n → ∞, tends to zero in a known
functional way, e.g., exponentially or algebraically, then we can extrapolate the
αn’s to infinite values of n using, e.g., one of Wynn’s algorithms(19,20) (see Ref. 21
for a review of extrapolation methods). We shall come back briefly to such issues in
Sec. 3.2. Without knowing something about the functional form of the subleading
corrections which control the remainder, extrapolation may not work very well
because the choice of the appropriate algorithm depends on the functional form
of the remainder.

Recently, van der Hoeven introduced the asymptotic interpolation method(11)

which allows in principle the determination of the asymptotic expansion of Gn be-
yond leading-order terms. When the function Gn is known with very high precision
and up to sufficiently large values of n, parameters such as the scaling exponent α

can sometimes be determined with extreme accuracy, as we shall see in Sec. 3.1.
An important feature of the asymptotic interpolation method is that it uses the de-
termination of subleading terms to improve the accuracy on leading-order terms.

Here we shall just give a short elementary introduction to the asymptotic
interpolation method for the case when the data Gn are real numbers. There are
several variants of the asymptotic interpolation method; ours differs occasionally
from that of Ref. 11. The basic idea of the asymptotic interpolation method is to
perform simple “down” transformations on the data Gn which successively strip off
leading and subleading terms. After a number of such down steps which depends
on the quality of the data, the transformed data become sufficiently simple to allow
a straightforward interpolation step. The list of down transformations which are
needed is given hereafter.

I Inverse: Gn −→ 1
Gn

R Ratio: Gn −→ Gn

Gn−1

SR Second ratio: Gn −→ Gn Gn−2

G2
n−1

D Difference: Gn −→ Gn − Gn−1
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At each stage, tests are applied to decide which of the four transformations should
be applied in order to favor the stripping process as much as possible. If |Gn| < 1
for large n, apply I; otherwise proceed. If |Gn| grows “slowly” at large n (we
found that a useful operational definition is to see if the growth can be identified as
algebraic with a rather well defined exponent), apply D; otherwise (“fast” growth),
apply R. In addition, if |Gn| grows or decreases exponentially at large n, we found
that it saves time to apply SR; also, if |Gn| is a slowly decreasing function, it
is more convenient to apply −D. Note that the differences or ratios involved
in R, SR and D are backward; this conveniently keeps the maximum index N
fixed.

When the procedure is iterated, after a while, an “interpolation stage”
is reached where the data can be asymptotically interpolated in a simple
fashion, typically by a constant plus a small remainder tending to zero at
large n. Basically this means that we have successfully stripped off a cer-
tain number of terms in the asymptotic expansion. For the kind of data
which we are considering here, the most useful interpolation stages usually
arise at the sixth and thirteenth stages (counting the original data as stage
zero).

There are two effects which limit the number of stages which can be ap-
plied to a given set of data. First, whenever a ratio or a difference are taken,
the precision of the data (i.e., the relative rounding error) deteriorates; as the
number of transformations applied increases, rounding errors make the data in-
creasingly noisy, beginning usually with the highest values of n. Second, the
interpolation stages require sufficiently large values of N , since the constant
asymptotic behavior at large n may be preceded by non-trivial transients. For
a given resolution N and a given precision, the procedure must be stopped
at the latest interpolation stage not significantly affected by the two effects
just mentioned. In practice we should have a significant range of values of n
over which the data are almost constant and not affected by rounding noise
(if the rounding noise is very low this range may extend all the way to N ).
When the down process is stopped the data are interpolated and the process is
reversed, by applying “up” transformations which are the inverses of the down
transformation in the reverse order. The inverses of the D, R and SR transfor-
mations involve one or two unknown additive or multiplicative constants which
are determined using the highest known values of the Gn and of their down
transforms.

When the process is completed, the data are asymptotically expressed as
a truncated transseries. Roughly, a transseries is a formal asymptotic series in-
volving integer or fractional powers, logarithms, exponentials and combinations
thereof.(26−28)

A worked example will now give the reader a more concrete feeling.
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3.1. Testing the Asymptotic Interpolation Method on the Burgers

Equation with a Single-Mode Initial Condition

Here and in Sec. 6 we shall perform tests using the one-dimensional inviscid
Burgers equation

∂t u(t, x) + u(t, x)∂x u(t, x) = 0, (15)

with a 2π -periodic real initial condition u0(x) having a finite number of Fourier
harmonics. We begin by recalling some well-known facts about the solution and
the singularities of the inviscid Burgers equation. Equation (15) has an implicit
solution in Lagrangian coordinates

u(t, x) = u0(a); x = a + tu0(a). (16)

Up to the time t� of the appearance of the first shock, the Lagrangian map a 	→ x
has a Jacobian

J (t, a) ≡ 1 + t∂au0(a) (17)

which does not vanish in the real space domain and (16) defines a unique real
solution. This solution has singularities in the complex domain (with the real part
defined modulo 2π ) at locations which are the images by the Lagrangian map of
the zeros of the Jacobian J . Generically these are simple zeros. The singularities
in Eulerian coordinates are then square-root branch points. The solution can also
be written explicitly using the Fourier–Lagrangian representation,(29,30) which in
a special case was actually discovered earlier by Platzman.(31) In the periodic case,
the simplest representation, called the third Fourier–Lagrangian representation,
valid for k �= 0, is

u(t, x) =
∞∑

k=−∞
ei kx ûk(t), (18)

ûk(t) = − 1

2i πkt

∫ 2π

0
e−i k(a+tu0(a))da. (19)

In this section we take the “single-mode” initial condition

u0(a) = −1

2
sin a, (20)

for which the first real singularity is at t� = 2. Using (19) and the integral repre-
sentation of the Bessel function Jn of integer order n (see, e.g., Ref. 32 p. 360),
one finds(31)

ûk(t) = i

kt
Jk(kt/2). (21)
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For convenience, we shall consider the solution at t = 1. This single-mode
solution has only one pair of complex conjugate singularities on the imaginary
axis at

z±
� = ±i δ, δ = ln(2 +

√
3) −

√
3

2
. (22)

Bessel functions of large order and arguments have an asymptotic expansion
(in the sense of Poincaré), obtained through the method of steepest descent by
Debye.(33) (The matter is also discussed in Chap. VIII of Ref. 34). Debye identified
various asymptotic regimes which, in our notation, depend on whether t is less
or larger than t� and is or is not very close to t�; his classification is in one-to-
one correspondence with that of the various regimes relating to preshocks, as
discussed, for example, in Refs. 29–30. When t = 1, well before t�, the relevant
Debye expansion for k → +∞ is:

ûk(1) � i√
π

√
3

k− 3
2 e−δk

(
1 +

∞∑

n=1

γn(2/
√

3)

kn

)
, (23)

where δ is given by (22),

γ1(ξ ) = 3ξ − 5ξ 3

24
,

γ2(ξ ) = 81ξ 2 − 462ξ 4 + 385ξ 6

1152
, (24)

γ3(ξ ) = 30375ξ 3 − 369603ξ 5 + 765765ξ 7 − 425425ξ 9

414720
,

and the higher-order polynomials γn(ξ ) satisfy recurrence relations given, e.g.,
in Ref. 32. The leading term of this expansion follows also from the Darboux
theorem (11).

Let us now show that the asymptotic interpolation method, as outlined in
Sec. 3, when applied to the Fourier coefficients of the single-mode solution (21)
can recover a suitably truncated version of the Debye expansion (23). We use all
the Fourier coefficients with k = 1, . . . , N , where N = 1000 and define our initial
data set as Gn ≡ ûn(1)/i .

Each coefficient is calculated with an 80-digit precision (using Mathematica R©

and 120-digit working precision). The basic transformations and their inverses
are implemented numerically in 80-digit precision, using the high-precision
packages GMP and MPFR available from http://www.swox.com/gmp/ and
http://www.mpfr.org/.
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Fig. 1. Numerical output from asymptotic interpolation at stages 1–6. Stages 1–5 are represented in
linear coordinates. For stage 6 we represent the difference between G6(n) and its asymptotic value 2
in lin-log coordinates.

With these data we are able to reach stage 13. The list of successively applied
transformations, resulting from the tests given in Sec. 3, is

SR, -D, I, D, D, D, D, I, D, D, D, D, D (25)

Figure 1 shows the first six stages. It is mostly intended to bring out overall features
and to make clear which of the four transformations is to be selected at the next
stage

It is very easy to understand why the first six stages are as listed above.
Indeed, let us suppose that, to leading order, Gn = Cn−αe−δn . We can work out
analytically the various transforms and we list hereafter the result up to the sixth
stage, displaying only the leading and when needed the first subleading term in
the large-n expansion:

Cn−αe−δn SR−→ 1 + α

n2

−D−→ 2α

n3

I−→ n3

2α

D−→ 3n2

2α

D−→ 3n

α

D−→ 3

α
(26)

It is seen that stages 1 and 6 are interpolation stages at which the data are asymp-
totically flat. Stage 6 is particularly important since the asymptotic value 3/α gives
the scaling exponent α. According to (23), for the Burgers single-mode solution,
the asymptotic value should be 2.

Let us now show in some detail how the asymptotic interpolation technique
works to give us the asymptotic expansion of Gn . We begin by limiting our-
selves to a six-stage procedure. The successively transformed data will be denoted
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G(1), . . . , G(6). Following Ref. 11, we interpolate G(6) by 3/α. How cleanly this
can be done is visible in the last of the graphs in Fig. 1, where we show the
discrepancy between G(6)

n and its asymptotic value 2. This discrepancy falls to
about 10−10 at the upper end of the range. Then we determine G(5) by inverting the
relation G(6) = DG.(5) This involves an unknown additive constant which is de-
termined from the last data point G(5)

N . Then we continue inverting the D operators
appearing at stages 4 and 5, each time using the last point to obtain the additive
constant. In this way we obtain a cubic polynomial for G.(3) We then invert the
operator I and obtain the inverse of the aforementioned cubic polynomial, which
can be written −2αn−3(1 + d1/n + d2/n2 + d3/n3 + · · ·) with in principle well
defined constants d1, d2, etc. Then we invert the operator SR; this can be done by
taking a logarithm which will transform second ratios into second increments. At
the end of the process we obtain the asymptotic expansion

Gn � Cn−αe−δn

[
1 + γ1

n
+ γ2

n2
+ γ3

n3
+ O

(
1

n4

) ]
. (27)

It is actually simpler to start with (27) and to apply successively the first
six transformations listed in (25) to identify the parameters. With the six-stage
procedure we obtain C , α, δ, γ1, γ2, γ3. Their values are given in Table 1.

It is seen that the coefficients C , α and δ appearing in the leading term have a
precision of at least 10−10. The precision of the coefficients γi for the subleading
terms deteriorates with the order.

We now turn to the analysis using a 13-stage procedure. This allows a much
more precise determination of the aforementionned coefficients and, in principle,
the determination of six additional terms in the expansion (27). After stage 6, the

Table I. Solution to the Burgers equation with single-mode initial condition: Compar-

ison of theoretical values with 6-stage and 13-stage asymptotic interpolation values

for the first six coefficients in Debye’s solution (23).

α δ C

6 stages 1.49999999993 0.4509324931404 0.4286913791
13 stages 1.49999999999999995 0.450932493140378061868 0.4286913790524959
Theor. value 3/2 0.450932493140378061861 0.42869137905249585643

γ1 γ2 γ3

6 stages −0.17641252 0.17295 −0.401
13 stages −0.17641258225238 0.172968106990 −0.406446182
Theor. value −0.176412582252385 0.1729681069958 −0.4064461802

γ4 γ5 γ6

13 stages 1.384160933 −6.192505762 34.5269751
Theor. value 1.3841609326 −6.1925057618568063655 34.526975286449930956

Note. For 13-stage asymptotic interpolation we also give some of the higher order coefficients.
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next interpolation stage is stage 13. This is easily shown by observing that the
discrepancy between G(6)

n and its asymptotic value 3/α = 2 is O(1/n4), because
all the lower-order terms have been stripped off by the first six transformations.
More specifically, we have

G(6)
n = 2 + c1

n4
+ c2

n5
+ c3

n6
+ c4

n7
+ c5

n8
+ c6

n9
+ �n, (28)

�n = O

(
1

n10

)
. (29)

Stages 7–13 gives us the coefficients c1, . . . , c6 and allow us to find the remainder
rn , as defined in (28). We found that rn , determined by this 13-stage procedure,
falls to about 5 × 10−17 at the end of the range. As shown in Table 1, the precision
on the first six coefficients in the asymptotic expansion has improved very much
and is now of a few 10−17 for the exponent α.

3.2. Further Remarks on Asymptotic Interpolation

The method of asymptotic interpolation is still in the development stage; im-
provements and new features are thus to be expected. Some are already suggested
in the initial publication.(11) One rather straightforward extension is from real to
complex data. For rapidly growing data, one can use logarithms instead of ratios.
In Ref. 11 it is recommended to take ratios or logarithms as often as possible and
to define “slow growth” as slower than, say, n5/2. This helps in identifying the
functional form of the transseries expansion. Once this is known, we found that
the values of the coefficients can be generated more efficiently by using a rather
broad definition of slow growth, namely well-identifiable polynomial behavior.

A very important issue is to determine how many stages are feasible with
a given resolution N and a given precision. We have found that the successive
interpolation stages, at which the data are asymptotically flat, have this flat regime
preceded by longer and longer transients. To make this more concrete we have
investigated how far it is necessary to go to be within five per cent of the asymptotic
value for the Burgers single-mode problem. For stage 6 the asymptotic value is 2
and the data are within five per cent everywhere. For stage 13, the asymptotic value
is about 0.33836513 and less than five per cent discrepancy holds for n > 25. The
next interpolation stage has number 20. The asymptotic value is 2/7 but less than
five per discrepancy holds only beyond n = 1620. In Fig. 2 we have represented
the data at stage 20. It is seen that the discrepancy is enormous until we reach well
beyond n = 1000. Obviously, if N is not large enough the stripping of subleading
terms performed by the successive stages must be stopped however high the
precision of the data may be. A related issue is discussed at the end of Sec. 7 of
Ref. 11.
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Fig. 2. Interpolation stage 20 has the asymptotic value 2/7 as shown in the inset. The main figure
shows the discrepancy G20(n) − 2/7.

Since rounding errors increase with the stage number, a certain balance must
be kept between resolution and precision. To investigate this quantitatively on
the Burgers single-mode problem, we have artificially degraded our precision by
adding random noise of various strengths. It appears that we need at least 16
significant digits at stage 6 and 27–35 significant digits at stage 13.

If we are only interested in obtaining an accurate determination of a few
terms in the expansion (27), we may be able to retrieve them using asymptotic
interpolation stopped at the sixth stage and continuing with a different strategy.
Indeed we observe that, at the sixth stage, the data given by (29) have the form

G(6)
n = s + rn, (30)

where the remainder rn decays to zero as n → ∞. This is a well studied situation
in the theory of convergence acceleration by sequence transformations, whose
goal is to replace the sequence (30) by a transformed sequence having the same
limit s but a much faster decaying remainder (see, e.g., Refs. 21, 22). A simple and
very popular acceleration method appropriate for (29) is Wynn’s rho-algorithm,(19)

although more sophisticated methods are known.(21) In our case it gives the correct
value 2 with a 20-digits precision. This is even better than the 13-stage asymp-
totic interpolation. Note that the choice of a particular convergence acceleration
method depends crucially on the functional form of the remainder. With asymp-
totic interpolation this form can be determined rather than having to be assumed.
Here a caveat is in order: if the data are not sufficiently asymptotic the mixed
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procedure just described will not work, for example because the remainder has not
yet settled down to algebraic decrease. A situation of this type seems to be present
in the work on short-time asymptotics discussed in Ref. 17: the rho-algorithm
does not improve the quality of the scaling exponent controlling the divergence
of the vorticity at the singular manifold and much higher resolutions are probably
needed for that problem.

E.J. Weniger (private communication) has pointed out that asymptotic in-
terpolation and sequence transformations have technical features in common. In
asymptotic interpolation one tries to annihilate leading terms in the asymptotic ex-
pansion, whereas in sequence transformation one tries to shrink the remainder by
annihilating its largest contributions, but the transformations used in both instance
are often the same, for example, finite difference operators.

A powerful method of asymptotic series analysis, widely applied in
statistical physics, is the method of differential approximants, which can
be viewed as a generalization of the Dlog Padé method.(9) In particular it
has been used to analyze self-avoiding walks (SAWs) and polygons (SAPs).
We have applied the asymptotic interpolation method to data available at
http://www.ms.unimelb.edu.au/˜iwan/polygons/Polygons ser.html.
The goal was to see how well we can reproduce the asymptotics of the number
of self-avoiding polygons with 2n steps on square and honeycomb lattices.(23−25)

When analyzing the square lattice data for the largest available range, that is n
up to 55, we found that asymptotic interpolation gives the value of the critical
point correct to 9 decimal places, whereas differential approximants give about 3
additional digits. We observe that (i) the actual implementation with asymptotic
interpolation is somewhat simpler and (ii) asymptotic interpolation is not limited
to problems which can be well approximated by solutions of low-order linear
differential equations.

The method of asymptotic interpolation is, in our opinion, very useful but is
of course not the panacea. One disease it cannot directly cure is the presence of
sinusoidal oscillations. For example if the analytic function f (Z ) has two complex
conjugate singularities at Re±i φ� on its circle of convergence, large-order Taylor
coefficients will present a sinusoidal oscillation with a wavelength proportional
to φ�. After any number of stages, this oscillation is still present and the data
cannot be interpolated by a constant. As we shall see now, a Borel transforma-
tion takes care of this problem and can also bring hidden singularities to the
foreground.

4. PÓLYA’S THEOREM

Here we just want to give the reader a good feeling of what the theorem states
and a heuristic derivation. We begin with examples discussed in Sec. 32 of Ref. 7.
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Let c = |c|e−i γ be a complex number and consider the function

F(ζ ) = ec ζ = 1 + c ζ

1!
+ c2ζ 2

2!
+ · · · , (31)

which corresponds to the choice an = cn in (2). The Borel–Laplace transform,
given by (4), is

f BL(Z ) = 1

Z
+ c

Z2
+ c2

Z3
+ · · · = 1

Z − c
. (32)

It has a pole at Z = c, whereas F(ζ ) is an entire function (analytic in the
whole complex domain). We set ζ = rei φ and let r → ∞, holding the direc-
tion φ fixed; the modulus of F(ζ ) = e|c|reφ−γ

, in the direction φ, varies ex-
ponentially at the rate h(φ) = |c| cos(φ − γ ), called the indicatrix of F . We
define k(φ) ≡ Re (c e−i φ) = |c| cos(φ + γ ). This is the (signed) distance of
the origin to the line normal to the direction φ passing through the pole c
and is called the supporting function of the (single) singularity. We observe
that

h(φ) = k(−φ). (33)

This relation is the simplest instance of Pólya’s theorem.
Next, following again Pólya’s Sec. 32, we want to have n distinct poles at the

complex locations c1, c2, . . . , cp. For this we take complex linear combinations
with non-vanishing coefficients C1, C2, . . . , C p:

F(ζ ) = C1ec1ζ + C2ec2ζ + · · · + C pecpζ . (34)

The Borel–Laplace transform is

f BL(Z ) = C1

Z − c1
+ C2

Z − c2
+ · · · + C p

Z − cp
. (35)

For any φ ∈ [0, 2π ], we define now the indicatrix and the support function, a little
more formally, as

h(φ) ≡ lim sup
r→∞

r−1 ln |F(rei φ)|, (36)

(in the present example, the lim sup is just an ordinary limit) and

k(φ) ≡ sup
z∈K

(X cos φ + Y sin φ) = sup
Z∈K

{Re (Ze−i φ)}, (37)

where Z = X + i Y and K ≡ {c1, c2, . . . , cp} is the singular set. Since there is
a finite number of singularities, the sup operation is just the same as the max-
imum. We define a supporting line of K as a line which has at least one point
in common with K and such that all the points of K are in the same half space
with respect to the line. The intersection of all these half spaces is the convex
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4

φ

k(  )φ
H

c 1

c

c

c

3

2

Fig. 3. Construction of the supporting function k(φ) of the set K of singularities of f BL(Z ). The
singularity c1 is on the convergence circle; the convex hull of K is defined by c1, c2 and c3. The
singularity c4 is inside the convex hull.

hull of K . In the present case this is just the smallest convex polygon con-
taining all the poles. It is readily seen that k(φ) is the (signed) distance of the
origin to the supporting line normal to the direction φ (see Fig. 3.) The rate of
growth of F(ζ ) in the direction φ is obviously that of the fastest growing of the
p exponentials in (34), which is precisely k(−φ), so that Pólya’s relation (33)
holds.

He proved a much more general theorem: Let f BL(Z ) be an analytic function
defined by the Taylor series (4) in powers of 1/Z which has a finite non-vanishing
radius of convergence H, and let K be the smallest convex compact set containing
its singularities, then (i) the Borel transformed series (2) defines an entire function
of exponential type, and (ii) the indicatrix h(φ) of F(ζ ), defined by (36), and the
supporting function k(φ) of K , defined by (37), are related by h(φ) = k(−φ) and
H = supφ h(φ).

(An entire function F(ζ ) is said to be of exponential type if its modulus is
bounded by Aea|ζ |, where A and a are suitable positive constants.)
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Pólya’s proof (not given here) makes use of the fact that f BL and F are
Laplace transformed of each other, specifically,

f BL(Z ) =
∫ ∞

0
F(ζ )e−Zζ dζ, (38)

F(ζ ) = 1

2π i

∫ a+i ∞

a−i ∞
f BL(Z )eZζ d Z , (39)

where a is any real number such that the singular set K is entirely contained in
Re Z < a.

Observe that no particular assumption is made regarding the type of the
singularities which can be isolated (e.g. poles or branch points) or continuously
distributed (natural boundary). Inside the circle of convergence |Z | = H , the series
(4) is divergent. However if the whole circle is not a natural boundary, the function
f BL(Z ) can be analytically continued to suitable Z ’s inside this circle and the pair of
integrals (38) and (39)can be viewed as a way of resumming the divergent series (4).

In applications it frequently happens that all the “edge singularities,” that
is, those determining the border of the convex set K are isolated. This border
is then piecewise linear, as in the case of n poles discussed above. The angular
dependence of the supporting function is then given by k(φ) = |c j | cos(φ + γ j )
in the angular interval φ j−1 < φ < φ j for which the supporting line normal to φ

touches K at c j = |c j |e−i γ j (see Fig. 3). If k(φ) is known with high accuracy, then
the positions of the edge singularities c j s can also be determined accurately.

Moreover we can then determine the type of an isolated singularity at c j

by studying the asymptotic behavior of F(ζ ) along rays ζ = rei φ with large
r , in a suitable angular interval. For example, let us assume that, near c j the
function f (z) has an algebraic singularity and is to leading order proportional to
(Z − c j )α−1, where the exponent α is real and not a positive integer. (If α − 1 > 0,
this behavior is assumed for a suitable first- or higher-order increment of f .) After
shifting the contour of integration to follow the boundary of K near c j (cf. Fig. 4),
application of steepest descent(37) to (39) with ζ = rei φ taken in the angular sector
φ j−1 < −φ < φ j and r → ∞ yields

G(r ) = ∣∣F(rei φ)
∣∣ = Cr−αeh(φ)r [1 + ε(r )], (40)

h(φ) = |c j | cos(φ − γ j ). (41)

Here C is a positive constant and ε(r ) tends to zero for r → ∞ at a rate which
depends on what is assumed for subleading corrections to the (z − c j )α−1 singular
behavior. If we are able to identify the algebraic prefactor to the exponential in
(40), we can find the exponent α of the algebraic singularity.

Non-algebraic singularities can be handled similarly. For example, if near c j

the function f (z) behaves as e1/(Z−c j ), application of steepest descent shows that
instead of the algebraic prefactor proportional to r−α which appears in (40), we
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a + i ∞

∞

c 1

c

c
c

2

3

4

Fig. 4. Contour of integration for computing the inverse Laplace transform of f BL(Z ) (dashed line)
and its deformation to obtain the asymptotic contribution from the singularity at c1 (continuous line
with arrows).

obtain an exponential prefactor proportional to e±2 cos(φ/2)
√

r . Furthermore, if all
the singularities on the convex hull of K are isolated, then (37) remains valid: the
indicatrix is piecewise a cosine function.

How this is done in practice will be discussed in the next section.

5. THE BOREL–PÓLYA–HOEVEN METHOD

As we have seen in Sec. 3, the asymptotic interpolation method, applied to
the Taylor coefficient of an analytic function with a finite radius of convergence
determined by a single isolated singularity allows one to identify its location and
type. This is not the case if there is more than one singularity on the convergence
circle. Furthermore “hidden” singularities are not directly retrievable from the
asymptotics of Taylor coefficients.

We can however take advantage of Pólya’s theorem (Sec. 4) to replace the
analysis of large-order Taylor coefficients of an analytic function by the analysis
of the behavior of its Borel transform at large distances in the complex ζ plane
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along various rays. This behavior can be found by asymptotic interpolation, from
which we can then construct the convex hull K of the singularities and obtain their
type when they are isolated. This is the BPH strategy which we now describe in a
more detailed way.

We start from a truncated Taylor series in inverse powers of Z

f BL
T (Z ) =

N∑

n=0

an

Zn+1
, (42)

with N terms, each of the coefficients being known with a precision ε. We construct
the associated truncated Borel series

FT(ζ ) ≡
N∑

n=0

an

n!
ζ n. (43)

We choose a certain number of discrete angular directions characterized by
their angle φ. Along each ray ζ = rei φ , we evaluate the modulus of the Borel
series at M points spaced by a constant distance (mesh) r0:

Gm ≡ |FT(mr0ei φ)|, m = 1, 2, . . . , M. (44)

Then we apply the asymptotic interpolation method of Sec. 3 to identify a large-m
leading-order behavior. For example, for algebraic singularities we have

Gm � C(φ)(mr0)−α(φ)eh(φ)mr0 . (45)

This gives us the constant C(φ), the prefactor exponent −α(φ) and the indicatrix
h(φ) for the discrete set of directions. Pólya’s theorem then gives us the supporting
function k(φ) = h(−φ) of the set K of singularities of the Taylor series. As we
have seen in Sec. 4, if the singularities on the convex hull of K are isolated and are
located at |c j |e−i γ j , then the supporting function is piecewise a cosine function,
given by |c j | cos(φ + γ j ). The exponent α gives us the type of the singularity:
a branch point (or a pole) of exponent α − 1. Other types of singularities, for
example of the exponential type discussed near the end of Sec. 5, are handled
similarly after identification of the appropriate asymptotic behavior.

In practice, we have to choose the set of discrete directions, the mesh r0 and the
maximum number of points M on each ray. If we happen to know the number p of
isolated singularities and, at least approximately, their positions we can pinpoint
the latter by taking 2p suitable φ directions. This is however rarely the case.
We recommend taking a fairly large set of directions (for example 500 uniformly
spaced directions) in order to reduce the risk of missing one or several of the cosine
functions. The natural choice for the mesh r0 is H−1 where H is the radius of
convergence of the Taylor series. An approximate value is Happrox = (1/n) ln |an|
for large n, which is roughly constant. For the determination of the largest distance
rmax = Mr0 we limit ourselves to the case where the function F(rei φ) grows at
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large distances, that is h(φ) > 0 (otherwise there are severe numerical problems).
rmax is then determined by the condition that the last term aN ζ N /N ! of the
(truncated) Borel series (43) should introduce a relative error in the determination
of F(rei φ) which does not exceed the precision ε with which the Taylor coefficients
are known. A rough estimate for |aN | is H N and for |F(rmaxei φ) is ermax H . Using
the Stirling formula, we find that, to leading order M � N (the dependence on ε

appears only in subleading logarithmic corrections).
We mention that an improvement would be to replace a mere polynomial

truncation of the Borel series by a suitable resummation/acceleration method for
computing entire functions.(38) This could be crucial for determining negative
indicatrix values, that is, when F(ζ ) is exponentially decreasing at large ζ .

It is of interest to know how well we can separate two discrete singularities.
By Pólya’s theory, each singularity contributes an exponential term to the large-r
behavior of the modulus of the Borel transform. If r becomes sufficiently large
compared to the difference in the two e-folding rates, only one of the two singu-
larities will be seen. By suitably changing the direction of the ray in the ζ -plane
we can then focus separately on each singularity. The worst case for discrimi-
nation is when we have two singularities which are at the same distance of the
origin. Assuming that this common distance is comparable to the radius of con-
vergence H and denoting by � the distance of the two singularities, we find that
the largest discrepancy in e-folding rate is roughly �2/H . Denoting, as above, by
M the maximum number of point on a ray, we find that good separation requires
the separation parameter M�2/H 2 to be large. Since discrepancies are amplified
exponentially, a separation parameter of 10 may suffice.

We shall not here discuss issues of algorithmic complexity, such as the re-
duction of the number of operations to evaluate the truncated Borel series. In
applications the complexity of the numerical calculations needed to accurately
determine the Taylor coefficients will usually exceed very much what is needed
for the BPH analysis.

6. TESTING BPH ON THE BURGERS EQUATION

WITH MULTIMODE INITIAL CONDITIONS

To test the BPH method we need a Taylor series having either a pair of
singularities on the convergence circle or “hidden singularities.” As in Sec. 3.1,
this can be done using 2π -periodic solutions of the inviscid Burgers equation. The
2-mode initial condition

u0(a) = λ1 sin a + λ2 sin(2a),

λ1 = −1/2, λ2 = (1/16)(4 −
√

(14)) + ε, (46)

ε = 1/150,



1114 Pauls and Frisch

produces at t = 1 a solution u(1, z) having, in Eulerian coordinates, singularities
at

z±
� = ±0.1103542160016972443

±i 0.737097018253664793. (47)

Henceforth we shall concentrate on the singularities of u(1, z) in the lower half
plane, which are also the singularities of the function u+(1, z), the sum of Fourier
harmonics with k > 0. Note that there are two singularities with the same imagi-
nary part and opposite real parts (this is a consequence of the symmetry a 	→ −a,
u0 	→ −u0 of the initial condition and of the complex conjugate symmetry). When
the Fourier series for u+(1, z) is transformed into a Taylor series in inverse pow-
ers of Z by setting Z = e−i z , the z singularities get mapped onto two complex
conjugate Z singularities

Z±
� = 0.4755903313336372343 ± i 0.0526974896343733942. (48)

The 3-mode initial condition

u0(x) = λ1 sin x + λ2 sin 2x + λ3 sin 3x (49)

λ1 = −1

2
, λ2 = 4 − √

14

16
+ 1

50
,

λ3 = − 1

100
, (50)

produces at t = 1 a solution u(1, z) having, in Eulerian coordinates, in the lower
complex half plane singularities at

z1� = −i 0.4608974136239120258 (51)

z±
2� = ±0.8575677577466957833

−i 1.1175132271503113898. (52)

The z1� singularity is on the imaginary axis and is the closest to the real
domain. The other two are further away (hidden) and symmetrically located with
respect to the imaginary axis. The corresponding Z singularities are

Z1� = 0.6307173770893952917, (53)

Z±
2� = 0.2140094820693456182

±i 0.2473645913888956747. (54)

are shown in Fig. 5.
To apply the BPH method we generate the Fourier harmonics with k =

1, . . . , N = 1000 using the third Fourier–Lagrangian representation (19). The
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Z 1

Fig. 5. Positions in Z -plane of the singularities for the 3-mode initial condition. Continuous line: circle
of convergence; dashed line: image of the real domain by the map z 	→ e−i z .

Lagrangian integrals are again calculated with 80-digit precision and 120-digit
working precision. The Borel transform is calculated for 20 values of φ between
0 and π/2 (a symmetry φ → −φ makes it unnecessary to take φ < 0 and for
φ > π/2 the indicatrix is negative). For the mesh we take r0 = 1. The total number
of points on each ray is M = 500. Along each selected ray, application of six-stage
asymptotic interpolation gives us C , α and h. We can check that the indicatrix
is piecewise a cosine function as implied by (37). Least square fits allow us to
identify the parameters of these cosine functions and thereby to find the locations
of the singularities. We recover the known values with an accuracy of about 10−6.
We found that the accuracy on “hidden singularities” is comparable to that on
directly visible ones. We also found that N = 1000 is not sufficiently asymptotic
for a 13-stage analysis of the kind described in Sec. 3.1.

7. CONCLUDING REMARKS

One central theme of this paper is the use of a Borel transform, in con-
junction with Pólya’s theorem, to reveal singularities not directly accessible from
the asymptotic behavior of the Taylor/Fourier coefficients. A very useful prop-
erty of the Borel transform of a Taylor series (in inverse powers of Z ) is that its
large-distance behavior encodes information not only about those singularities of
the Taylor series located on its convergence circle, but also about other singu-
larities “hidden” inside this circle. Actually the Borel transform, followed by a
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Borel–Laplace transformation is a way of performing analytic continuation. Re-
covering hidden singularities from a Taylor series has important applications
in a number of fields; many of the known techniques have been reviewed by
Guttmann.(9)

To the best of our knowledge Pólya’s theorem has never been used as a
numerical tool for identifying singularities. The theorem is of a very general
nature and assumes nothing about the nature of the singularities; this has the
great advantage that we do not have to distinguish between true and spurious
singularities, as is the case, for example, when using Padé approximants and
related methods. The principal drawbacks are that (i) not all hidden singularities
are accessible, only those located on the convex hull of the singular set, (ii) pairs
or clusters of singularities situated too close to each other may not be easily
distinguishable, and (iii) enough terms in the series must be known to be able to
actually obtain the asymptotic behavior of the Borel transform. When hundreds
to thousands of Taylor coefficients are known, alternative mathematically well-
founded techniques may become competitive, for example the old Weierstrass
analytic continuation method; thanks to recent algorithmic discoveries it can be
performed quite efficiently.(39,40)

The other theme of this paper is the asymptotic interpolation method of van
der Hoeven which is here used both directly (when Darboux’s theorem is ap-
plicable) and indirectly by means of Pólya’s theorem. When a large number of
Taylor/Fourier coefficients are known with sufficient accuracy, asymptotic inter-
polation can give truly remarkable results, providing us not only with very accurate
leading terms but also with several subleading corrections. As we have seen in
Sec. 3, there is usually a well-defined relation between the number of subleading
correction terms and the number of stages of the procedure which can be achieved.
The latter depends crucially on the number of known coefficients and on their pre-
cision. For example, if the data have only double precision, it is unlikely that more
than six stages can be achieved. Asymptotic interpolation might than be viewed
as an overkill compared to more standard techniques, but it is worth stressing that
asymptotic interpolation is very easy to implement.

Which kinds of problems are most likely to fall within the prongs of full-
strength Borel–Pólya–Hoeven-type analysis? This depends crucially on the com-
putational complexity of the problem, that is the dependence of CPU requirement
and storage on the number of coefficients N . As pointed out by Guttmann,(9) phase
transition problems formulated on a lattice require usually enumerating diagrams
and the number of these tends to grow exponentially with order, while fluid dy-
namics problems generally have only polynomial complexity. In connection with
phase transitions our BPH method is likely to be less precise than alternative
methods such as differential approximants, but it can usefully supplement them to
ascertain that the singularities identified are not artefacts.



A Borel Transform Method for Locating Singularities 1117

In fluid dynamics one outstanding problem is the issue of finite-time blow-up
for the three-dimensional incompressible Euler flow with smooth initial data.(10,41)

For initial data having simple trigonometric polynomial form, one can deter-
mine numerically a number of coefficients of the Taylor expansion in time of
the enstrophy (integral of one-half the squared vorticity). This was done for
the Taylor–Green flow by Brachet et al.(42) (yielding 40 non-vanishing coeffi-
cients calculated with quadruple working precision) and for the Kida–Pelz flow
by Pelz and Gulak(43) (yielding 16 non-vanishing coefficients having at least 40-
digit precision). Because the number of coefficients is rather small, there is no
consensus on what the results imply for blow-up. Such calculations have a com-
plexity O(N 5) which can however be reduced to O(N 4) (up to logs) using the
method of relaxed multiplication.(39) It is likely that a state-of-the-art calculation
for flows with simple trigonometric polynomial initial conditions can give up to
several hundred non-vanishing Taylor coefficients of the enstrophy, with a work-
ing precision of several hundred digits. Another problem which can be tackled
by series analysis is the analytic structure of the two-dimensional incompressible
vortex sheet (Kelvin–Helmholtz instability). It is known that an initially analytic
interface will develop a singularity in its shape after a finite time. Moore has
made a prediction regarding this singularity(44) which has been studied by vari-
ous numerical techniques.(16,45) Again there is no consensus on the type of this
singularity.

It is of course of interest to extend to several dimensions the BPH method,
here presented only in the one-dimensional case. We observe that there exist
multi-dimensional generalizations of the Borel transform(46−48) and that the the
asymptotic interpolation method can also in principle be extended to several
dimensions.(11) In several dimensions, singularities are not point-like; they reside
on extended objects such as analytic manifolds and can have a much more involved
structure than in one dimension. It is possible to partially reconstruct such objects
using a variant of BPH. Furthermore, we note that Pólya’s theorem has been
extended to several complex dimensions(48) (it is then referred to as the Ivanov–
Stavskiı̆ theorem). Information on singularities can then in principle be obtained
numerically in a way analogous to what has been done in Sec. 5. Such issues will
be discussed elsewhere.
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33. P. Debye, Näherungsformeln für die Zylinderfunktionen für große Werte des Arguments und die

unbeschränkt veränderliche Werte des Index. Math. Ann. 67: 535–558 (1908).
34. G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge University Press, 1922).
35. B. Ya. Levin, Lectures on Entire Functions (American Mathematical Society, Providence, 1996).
36. L. Bieberbach, Analytische Fortsetzung, Springer, Berlin, 1955. Russian translation: Analitich-

eskoye Prodolzhenye, Nauka, Moscow, 1967.
37. F. W. J. Olver, Asymptotics and Special Functions (Academic Press, 1974).
38. J. Müller, Convergence acceleration of Taylor sections by convolution. Constr. Appr. 15:523–536

(1999).
39. J. van der Hoeven, Relax, but don’t be too lazy. J. Symbolic Comput. 34:479–542 (2002).
40. J. van der Hoeven, On effective analytic continuation, preprint Dép. Math. Orsay, http://

www.math.u-psud.fr/˜vdhoeven/Publs/2006/riemann.ps.gz
41. A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow. (Cambridge University Press,

Cambridge, 2000).
42. M. E. Brachet, D. I. Meiron, S. A. Orszag, B. G. Nickel, R. H. Morf and U. Frisch, Small-scale

structure of the Taylor–Green vortex. J. Fluid Mech. 167:411–452 (1983).
43. R. B. Pelz and Y. Gulak, Evidence for a real-time singularity in hydrodynamics from time series

analysis. Phys. Rev. Lett. 79:4998–5001 (1997).
44. D. W. Moore, The spontaneous appearance of a singularity in the shape of an evolving vortex

sheet. Proc. R. Soc. London A 365:105–119 (1979).
45. D. I. Meiron, G. R. Baker and S. A. Orszag, Analytic structrue of vortex sheet dynamics. Part 1.

Kelvin–Helmholtz instability. J. Fluid Mech. 114:283–298 (1982).
46. L. A. Aizenberg and V. M. Trutnev, A Borel summation method for n-tuple power series. Sibirsk.

Matem. Zh. 12(6):1895–1901 (1971).
47. V. M. Trutnev, The radial indicator in the theory of Borel summability with some applications.

Sibirsk. Matem. Zh. 13(3):659–664 (1972).
48. L. I. Ronkin, Introduction to the Theory of Entire Functions of Several Complex Variables. Transl.

Math. Monographs, Vol. 44, AMS (1974).



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


